Assessing the Tolerance of Neural Machine Translation Systems Against Speech Recognition Errors
نویسندگان
چکیده
Machine translation systems are conventionally trained on textual resources that do not model phenomena that occur in spoken language. While the evaluation of neural machine translation systems on textual inputs is actively researched in the literature, little has been discovered about the complexities of translating spoken language data with neural models. We introduce and motivate interesting problems one faces when considering the translation of automatic speech recognition (ASR) outputs on neural machine translation (NMT) systems. We test the robustness of sentence encoding approaches for NMT encoderdecoder modeling, focusing on word-based over byte-pair encoding. We compare the translation of utterances containing ASR errors in state-of-the-art NMT encoder-decoder systems against a strong phrase-based machine translation baseline in order to better understand which phenomena present in ASR outputs are better represented under the NMT framework than approaches that represent translation as a linear model.
منابع مشابه
Assessing the Impact of Speech Recognition Errors on Machine Translation Quality
In spoken language translation, it is crucial that an automatic speech recognition (ASR) system produces outputs that can be adequately translated by a statistical machine translation (SMT) system. While word error rate (WER) is the standard metric of ASR quality, the assumption that each ASR error type is weighted equally is violated in a SMT system that relies on structured input. In this pap...
متن کاملA Comparative Study of English-Persian Translation of Neural Google Translation
Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...
متن کاملLIMSI English-French Speech Translation System
This paper documents the systems developed by LIMSI for the IWSLT 2014 speech translation task (English→French). The main objective of this participation was twofold: adapting different components of the ASR baseline system to the peculiarities of TED talks and improving the machine translation quality on the automatic speech recognition output data. For the latter task, various techniques have...
متن کاملتصحیح خودکار خطا در درخت بانک نحوی با استفاده از یادگیری ماشینی انتقال محور
The Treebank is one of the most useful resources for supervised or semi-supervised learning in many NLP tasks such as speech recognition, spoken language systems, parsing and machine translation. Treebank can be developded in different ways that could be, generally, categorized in manually and statistical approaches. While the resulted Treebank in each of these methods has the annotation error,...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017